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This paper presents a nonoscillatory option (i.e., free of dispersive ripples) of the advection
algorithm described previously in J. Comput. Phys. (54 (1984), 325; 67 (1986), 296). The
approach acopted merges the flux-corrected transport methodology with the iterative
formalism of the algorithm. Further discussion of the algorithm’s accuracy is included.
Theoretical considerations are illustrated through numerical tests and examples of
applications to atmospheric fluid dynamics problems. T 1990 Academic Press. Inc.

I. INTRODUCTION

Smolarkiewicz [1,2] and Smolarkiewicz and Clark [3] described 2 class of
nonlinear, fully multidimensional, sign-preserving advective transport algorithms of
varying accuracy and levels of complexity. The generai concept of the algorithm is
that of the dissipative advection schemes; however, compensation of the leading
truncation error terms of the donor-cell scheme is nonlinear. It is achieved through
the iterative application of the donor-cell scheme where the second and following
iterations use pseudo velocity fields, obtained from rencrmalization of the trunca-
tion errors of the donor-cell scheme into the form of donor-ceil fluxes. The resulting
conservative algorithm is second-order accurate for an arbitrary velocity fleid while
it possesses such useful properties of the donor-celi scheme as strict conservation of
the sign of the transported field and a relatively small phase-error. The analytic
method of the derivation of the algorithm [2] allows for a relatively simpie
generalization of the scheme on nonstandard forms of the continuity equation with
eventual inclusion of the diffusive terms [3].

In both [2, 3] it was emphasized that although the algorithm is strictiy sign
preserving it may, in general, suffer from dispersive ripples, similar to all higher
order linear advection schemes. The sign-preserving property is associated with the
nonoscillatory behavior of the algorithm near “zeros” of the transported field
{Section 4 in [3]). When the transported field contains a significant constant or
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background component then the dispersive ripples appear in the solutions. The
amplitude of the oscillations is considerably reduced compared to the linear
schemes. In a number of applications, monotonicity preservation becomes a
necessary property of the advection scheme. In responding to such practical needs,
we present an option of the multidimensional positive definite advection transport
algorithm (hereinafter, MPDATA) which strictly preserves the local monotone
character of the transported field. The approach adopted merges the flux-corrected
transport (FCT) methodology of Boris and Book [4-67] and Zalesak [7] with the
iterative formalism of MPDATA. Due to the original design of MPDATA it leads
to the simple modification of the original version of the algorithm. Because of
MPDATA’s specific phase-error properties [3], the nonoscillatory option appears
to be an accurate and competitive tool for applications. A practical advantage of
the approach is separability of the sign and the monotonicity preservation. Because
the sign preservation is about half as expensive as the monotonicity preservation,
incorporating the nonoscillatory modification as an extra option of MPDATA in
the dynamic model has economic advantages, especially in atmospheric flows where
a class of problems requiring strict preservation of monotonicity is relatively
narrow compared to the class of problems that require strict preservation of sign.

The paper is organized as follows. Section 2 contains a summary of MPDATA.
Section 3 contains a summary of the general, arbitrary-dimensional FCT procedure
together with the consequently following nonoscillatory version of MPDATA.
Section 4 presents elementary tests and discussion on the accuracy of the scheme.
The examples of application of the nonoscillatory option of MPDATA to
atmospheric fluid dynamics problems are presented in Section 5.

2. SUMMARY OF Basic MPDATA

The basic equation to be solved is the continuity equation describing transport
of a nondiffusive scalar quantity in M-dimensional space

S
Li s =0, )

I=1

where ¥ = (1, x*, ..., x*) is the nondiffusive scalar quantity, assumed to be of con-
stant sign; u'=u'(¢, x', .., x") is the Ith velocity component, /=1, .., M; and
t,x=(x', .., x*) are the time- and space-independent variables. For compactness of
the numerical equations we shall use the same notation as in [2, 3].

¥ is a numerical approximation of the solution of Egq. (1), defined in points
(", x;), where ("=n-At, x;=('4X",i*4X? .., i 4X"), n=0,.,NT; i'=
0,.., NX/, and 4X" is the constant spatial increment in the Ith direction. The
indices described by capital letters always indicate vector components whereas the
indices described by lowercase letters indicate grid positions.

e,;=(0,0,..,0,1,0,..,0) is a unity vector in the /th direction;



-~}

()

POSITIVE DEFINITE ADVECTION SCHEME i

"u! . | 5, 18 the Ith velocity component in the nth time step defined on a staggersd
grid (the /th component is staggered 14X” in the /th direction).

The basic MPDATA may be compactly written as
cx EIa i PN L Y (~'Ik IS T E L ~
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T = - Z [F(Y; Vite » “ine,)“L Wi_e, - ¥ M e -
I=1

R

R

where 77 is the donor-cell advective flux in the Ith direction evaluated in the same
staggered points as the Ith velocity component and defined as
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[-]1"=max(0, -} and [-]~ =min(0, -) are the positive- and the negative-part
operators, respectively. k =1, .., JORD numbers the corrective iterations y{*’ such
that
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and also, defined for each consecutive iteration, pseudo velocities such that

=yt (4a), 14b}

‘,\)k+l~ (~)* . (\ill L B
v=a(u, y'*"); u ="ty {3a), {5b;

i+ 1 2= P+l 2ept

The pseudo velocities appearing in the symbolic relationship in (5a) are derived
analytically based on the truncation error analvsis of the donor-cell scheme
{Section 2 in [27). Their explicit, finite-difference representations were discussed in
derail in [2,3]. When JORD =1 the algorithm results in the common donor-cell
scheme. For details on the derivation of the algorithm as well as a discussion of
consistency, stability, and accuracy, interested readers are referred to [2] In [2]
it has been shown for M < 3, that the stability of the first iteration (the donor celi
scheme) implies stability of the consecutive iterations. An extension of the scheme
to the anelastic transport equation, which requires taking spatially variable density
into account in (1), (2), and explicit representations of {5a), has been discussed in
etail in [3, Section 3.3].

The scheme was originally designed for the transport of the constant-sign scaiar
variabies in the anelastic, fluid dynamic model with inclusion of the moist convec-
tion processes [3]. Extension of the scheme to fields of variable sign may be
achieved in several different ways, however, adding an appropriate constant to the
transported field appears to be an optimal choice. This option has been discussed
in detail {Section 4 in [3]), since it exposes an important property of the scheme.
Inn contrast to (1} and the linear finite difference approximations to it, MPDATA
is ot invariant with respect to the addition of a constant, but

MPDATA[ Y +const] = MPDATA[ Y/ + ((AX ", Ar*), (6}
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where MPDATA in (6) has a symbolic meaning of approximation to (1). In [3]
it was shown that adding a large constant to the transported field increases overall
accuracy of the solution, but at the cost of losing the nonoscillatory character of the
solution near the background value. A possible cure of this deficiency of MPDATA
incorporates the ideas of FCT algorithms [4-7].

3. THE NONOSCILLATORY OPTION OF THE SCHEME

3.1. General FCT Procedure

The generic reason for the appearance of the oscillations in the numerically
generated higher order accurate solutions to Eq. (1) is that the magnitude of certain
fluxes is overestimated with respect to their analytic value. In contrast, the
magnitude of the fluxes given by the first-order accurate schemes is underestimated,
which results in monotone but heavily damped solutions [7]. The FCT procedure
overcomes the problem of false oscillations by imposing appropriate limits on the
transport fluxes from the higher order accurate algorithms. In the following we
summarize the essential aspects of the general FCT scheme, in order to facilitate
derivation of the nonoscillatory option of MPDATA.

Consider some higher order advection aigorithm for integration of Eq. (1),

M
‘/’?Jrl:‘p?_ Z (FHi[+ 1,v’29,_FHi17 1/2e,)‘ (7
=1

Since in (7) the time level of the fluxes may be taken at any position, this equation
represents the general form of an arbitrary finite-difference flux-form scheme. The
high-order FH-flux may be arbitrarily cast into a sum of the flux from a certain
low-order nonoscillatory scheme and the residual, i.e.,

FH{, 5o, =FL{ | \pe,+ A\ 126 (8)
where (8) defines the residual 4-flux, which has a sense of correcting ar least the
first-order truncation error terms in the transport fluxes of the low-order scheme,
ie.,

Al

i+ 12e;

~ At-C(AX, At)+ HOT, (9)

where HOT has a usual meaning of the “higher order terms.” Because of this com-
pensation of the leading truncation-error term in a low-order scheme the A-flux is
traditionally referred to as the “antidiffusive” flux. Using (8) in (7) results in

M
w;’*’l = '[’;H—l — Z (Ai[+1:291_Ai[* 1/291)’ (10)
=1

where “¥” denotes the solution given by the low-order scheme, which by assump-
tion satisfies

TR S T (11)
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where M*% and M are yet unspecified maximal and minimal values of the
scalar within the ith grid box that achieve the monotonicity of the scheme. Their
explicit form will be discussed later in this section. Inasmuch as ¥7 "' preserves the
monotone character of the transported field, (11), the eventual oscillatory behavior
in 7' comes from overestimating the magnitude of certain A-fluxes. Thus, <
ensure ripple-free solutions it is sufficient to appropriately iimir A-fluxes such that
4[

=(| -
i+ 12 i 1-2ey

Al

i+ 12e; E‘\ EZ ,
where C-coefficients, that in general are functions of the low- and high-crder
solutions on the grid, are determined from the set of constraints

0<Cy

P+ 172e ™

<1

[
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and
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When C{, | ,,, is equal to zero or unity the resulting transport flux in (14} becomes
FL{, |4, OF FH{ | ,,, respectively. The assumed convergence of the low-order
schemes involved in (8) together with (9), (12}, and {13) ensure the convergence of
the Y-solutions in (14) as 4X, 41 — 0.

The constraints in (13} and (14) allow one to derive formally {see Appendix} the
explicit form of the C-coefficients, and consequently, the explicit form of the limited
antidiffusive fluxes in (12). The derivation provides maximized A4-fluzes in (12)
satisfying constraints (13) and (14):

~ ,
Al e, =min{l, B, B AL 0, 11 +min(l, B BE DAL, 5] - 115)
where
MAX n+1 A+ MIN
=t gttt s ey
A7 +e ! AV +e

and AN, A7V are the absolute values of the total incoming and outgoing 4-fluxes,
(8), from the ith grid box, respectively. ¢ is a small value, e.g., ~ 10~ "%, which "‘ias
been introduced herein, to allow for efficient coding of -ratios when AN or A7V
vanish. Equations (14), (15), (8), (16a), and (16b) constitute a general, arbi traiy
dimensional form of the FCT algorithm discussed by Zalesak [71 (the formuias
(14}, (14") in [7] are not required to preserve meonotonicity and, in our experience,
they are responsible for certain pathological behaviors of the FCT schemes,
cf, £8]). The arbitrary dimensionality of the procedure in [ 77 contrasts with the
alternate-direction approach utilized by most other monotone schemes.
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In order to determine B] and B} uniquely one must specify the limiter
Y MAX Y M in (16a), (16b). The simple, standard limiter [7] is

MA n n n
lﬁi x = maX i—ep? lpl’ l//|+e,’ Wl +e11 W i Wl +e11) (173)
l//?”N—mm(lﬁl N SR SRR S (17b)

The low-order, nonoscillatory ¥-solutions appearing in (17a), (17b) constitute the
original Boris and Book [4] limiter. This limiter effectively prevents development
of spurious oscillations in an arbitrary flow field. Zalesak [ 7] extended the original
limiter onto the local extrema of the solution at the previous time step. The goal
of this extension is to improve the predictions in incompressible flows where the
only extrema ailowed in an arbitrary grid point are those that were present in its
immediate environment (determined by the CFL stability criteria) at the previous
time step.

3.2. FCT Option of MPDATA

The formulation of the nonoscillatory option of MPDATA is a straightforward
consequence of the discussion presented in the previous section. Note that the
transport fluxes for k =2 in (2) have the sense of 4A-fluxes in (10). Because all of the
transport fluxes in MPDATA always have the form of the donor-cell fluxes (3) and
MPDATA is strictly sign preserving, Eq.(15) reduces to the formula for the
monotonicity-preserving pseudo velocity

(~ & 3

) . ~) ~) B
[ ui1+1f2e,]MON=mln(1’ ﬂ ﬁ|+e,)[ u|+12e1] +m1n(1 B l+e,)[ uil+ l,'2e,] ’ (18)
where k =2, 3, ..., IORD and the transport of nonnegative scalars has been assumed.
In the case of the advection of nonpositive scalars 1 replaces | and vice versa. The
Bl and B} ratios take an explicit form

MAX (x)f !
T= i Y (19a
4 N (x e ()1 )
Z X[([ 1—12e,] l//l:ke[ _[ |+1 7e,] l// i+e;
(x =1 MIN
Bi = id id (19b)

doAr K (~)

z AL TS A P R TLt s
and (17a), (17b) become
X =max(yy ., RTINS (20a)

k-1 k-1 k-1
lﬁM‘N—mm(lﬁ. e U Wi o W38T L) (20b)
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which completes the nonoscillatory option of MPDATA. As in the original version,
the FCT option allows for an arbitrary number of corrective iterations, where the
“high-order™ solution in (14) becomes the “low-order” sofution in the next iteration.
We have verified in a series of elementary tests that the effect of the consecutive
iterations is similar to that in the basic version of MPDATA. ie. each iteration
increases the accuracy of calculations but the rate of improvement decreases quickly
with iterations, leaving JORD =4 a practical maximum {cf, Section4 in {27 and
Section 4 in [37). Since the developments reported in [2] and [ 3] modified either
the physical or the pseudo velocity field, they are also applicable with (18)-(201.

4, ELEMENTARY TESTS AND ACCURACY {CONSIDERATIONS

In {3] we demonstrated that MPDATA is a reliable, accurate, and convenisnt
tool for geophysical fluid dynamics applications. Consequently, in the current paper
the scheme in Egs. (2)—(5) will be considered a reference state for the nonoscillatory
option described in the previous section. The nonoscillatory option, by design,
prevents development of the dispersive ripples. Thus, our major concern is not how
well the scheme preserves the monotone character of the tramsported fieid but
rather how it affects the accuracy of the solutions obtained with the original version
of the algorithm. The intension of this section is to document accuracy charas-
teristics of the nonoscillatory MPDATA and to indicate certain specific advantages
of the scheme that are important for practical applications.

A number of important aspects on the accuracy of advection aigorithms may be
assessed through analysis of the surfaces of the truncation error {{Ar%. AX?} a3
AX, A4t — 0 in a one-dimensional constant coefficient case. In contrast to linear
advection schemes. formal evaluation of the truncation error for the nonlinear algo-
rithms can be cumbersome. Instead, one may consider a simpie empirical est,

-~

which is an extension of the convergence test employed in [Z, 3]. For the purpose

of the test we assume uniform advection of the one-dimensional Gaussian distribu-
tion Wix. toy=(1/o \/2m)exp(—(x —x,)*/20"). After an arbitrary chosen fived
time, T=NT -At(a, AX) (<1 is the Courant number and AT is the variabie
number of the time steps) the average error per spatial increment and per unit of

time between the numerical and analytical solutions is evaluated as

1 NX - 12 .
TRER(x, 4X) = ?[ S (T x;)— w;,'TﬁW'X] , (203
_t

i=1

where Y(T, x,), ' are the analytical and numerical solutions, respectively. at the
peoint (7, x;). TRER, when multiplied by 7, has the sense of a cumulative in ¥ and
average per grid increment truncation error of an employed scheme. Dividing AX
successively by 2 and evaluating TRER for 0.05<2<0.95 with the Courant
rumber increment A« = 0.05 results in surfaces defined by (21).

Figure t displays isolines of log, TRER for the JORD =2 version of MPDATA
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FiG. 1. Isolines of log,(TRER) for the JORD =12 version of MPDATA, in the polar system of
coordinates. The radius has the sense of the grid increment where numbers on axes indicate powers
of 2 in the coefficient multiplying the finest resolution; the polar angle represents the Courant number
varying from 0 to 1 for angles between 0 and =/2, respectively. The numerical values of the field are
displayed for every second point in the angular (Courant number) direction.

in the polar system of coordinates, where the radius r = log,(4X/4X;) +8 (4X, is
the largest grid increment employed in the test) and the polar angle ¢ = a(n/2). For
r =8 the dispersion of the initial distribution, o, is covered by 1.5 grid intervals and
for r=1 it is covered by 192 grid increments. The time of integration, 7, has been
chosen such that the solution advects over the one grid increment for » =8 and 128
increments for r=1. The numbers displayed along the arcs of constant radius are
the values of log, TRER. Comparing these values along the rays of constant
Courant number (constant ¢) shows that log, TRER decreases in —2 increments
with doubling the resolution as 4X, At — 0. This demonstrates the second-order
convergence rate of the JORD =2 version of MPDATA in accord with our previous
analysis in [2,3]. Figure2 shows log,(TRER) for the IORD =3 version of
MPDATA. The second corrective iteration in the scheme shifts the entire surface
down increasing the overall accuracy and it deforms the surface along the a =0.5
line, resulting in the depression of the third-order convergence rate. Additional
corrective iterations increase accuracy only slightly. Figure 3 shows the error-
surface for the JORD =2 nonoscillatory version of MPDATA. A comparison of
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Figs. 3 and 1 shows that at low resolutions, FCT modification has little effect on
the accuracy of the algorithm. However, as 4X, 4r — 0 there is a slight degradation
in the convergence rate from 2 to ~1.8. Similar results were obtained for the
IORD =3 version of MPDATA.

The accuracy characteristics of an arbitrary FCT algorithm depend on the choice
of the low- and high-order schemes employed in the procedure (Section 3). Figure 4
shows the result of the convergence test for the common donor-cell/leapfrog FCT
scheme [7]. A comparison of Figs. 3 and 4 indicates, that in general the non-
oscillatory MPDATA converges faster and is more accurate than the donor-cell/
leapfrog FCT scheme. For small Courant numbers the latter scheme has a ~1.7
convergence rate, slightly slower than the nonoscillatory MPDATA. For large
Courant numbers, however, its convergence rate degrades considerably decreasing
to values smaller than unity. The reason for this slow convergence rate is the incon-
sistent anisotropy of the truncation error distribution of the two schemes mixed by
the FCT procedure. A comparison of the error surfaces of the donor-cell and the
second-order leapfrog schemes showed that the donor-cell scheme, despite its first-
order convergence rate, is actually more accurate than the second-order leapfrog
scheme for large Courant numbers at the resolutions considered. The latter is
related to the faster diminishing phase-error in the donor-cell than in the leapfrog

Kl

Il
>

FiG. 4. Isolines of log,(TRER) for the donor-cell/leapfrog FCT scheme.
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scheme as o — 1 (cf, Table IIT in [4]). The nonoscillatory opticn of MPDATA is
free of the above-mentioned problem because the subsequent corrective iterations
affect only the amplitude errors and retain the phase-error of the donor-cell scheme
{Section 4 in {37}

The nonosciilatory MPDATA has been compared with other, elementary +CT
schemes. As revealed by the convergence tests, the nonoscillatory MPDATA is
more accurate than the FCT scheme based on the dissipative second-order Crowley
algorithm, and for a> ~0.5 it is also more accurate than the FCT version of
fourth-order accurate in the space leapfrog scheme and the FCT version of the
second-order Crowley scheme with the fourth-order anproximation to the rransnort
fuxes [9] The FCT scheme based on the “constant-grid flux” fourth-order dis-
sipative aigorithm of Tremback er ol [107] has at least twice the accuracy of the
nonoscillatory MPDATA. No analyzed FCT algorithms exceed second-order con-
vergence rate as a result of the centered approximation of the flux derivatives ir
The deviations towards convergence rates of less than 2.0 are attributed to the fact
that. in order o ensure monotonicity of the final algorithm, the firsi-crder 2rror
terms in the low-order scheme employed in the FCT procedures cannot be toraliy
compensated at every grid point [117].

A more pragmatic illustration of the considerations above is provided by
one-dimensional uniform advection test of the irregular signai

(\J

\ NN

) V4 VY .
Bx, 7o) =2 + gy(x) (1+03sm \Sax ‘I;K1+045An %A}( x/‘g/)x, (2
where
—1 if 8<x«28
dolx) { I if 28<x<39 -

with x=0.5 and 4X = 1. The choice of the signal and the spatial resolution places
the results of the test in the »> ~5 portion of the log.{ TRER) surfaces discussed
earlier. Figure 5a shows the results of the test after 80 time-steps for the JORD =3
version of MPDATA (dashed line) and the nonoscillatory version of tnis schems
{thin solid line). The heavy solid line represents the analytic solution. Comparison
of the three curves shows that the primary effect of the FCT modification is 10
remove the overshoot and the undershoot present in the original solution.
Figure 5b shows the results of the same test but for the traditional FCT algorithm
based on the donor-cell and the leapfrog scheme. Although the FCT procedure
efficiently removes the dispersive ripples, the amplitudes of the initial perturbatiors
are severely damped at the cost of the improving phase-error. Similar results were
obtained for the FCT version of the second-order Crowley schemes. Neither of the
schemes considered is capable of resolving the fine details of the initial condition.
The superiority of the MPDATA is questionable when compared with the fourth-
order accurate dissipative scheme [10] and its FCT version, Fig. 5c.
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FiG. 5. Uniform advection of the irregular signal (heavy solid lines) with oscillatory schemes
(dashed lines) and their nonoscillatory versions (thin solid lines): (a) the JORD =3 MPDATA; (b) the
second-order accurate leapfrog scheme; (c) fourth-order accurate dissipative scheme in [10].
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FIGURE 5 {continued}

The examples presented illustrate the advantages of the nonoscillatory MPDATA
over the more traditional FCT algorithms based on the second-order accurate lsap-
frog-type or the dissipative advection schemes. The primary reason for the betier
performance of the MPDATA is the consistent phase-error in the low- and the
high-order schemes mixed by the FCT procedure. An apparent advantage of the
MPDATA over the leapfrog-type algorithms is the common (for the dissipative
schemes) requirement of the one-time level storage of the transported field. The
higher order accurate dissipative advection scheme [10] employed in the FCT
procedure, although attractive according to the one-dimensional analysis, does net
have its multidimensional counterpart, which limits its applications to the aiternate-
direction (time-splitting) approach. This immediately limits the practicality,
especially from our viewpoint, since in the class of geophysical fluid dynamics
applications addressed (cf, [3] and Section 5 of this paper), time-splitiing is not
aliowed. Another weak point of these algorithms is that their fast convergence, and
the resulting excellent accuracy, is limited to uniform-grid calculations and the
particular form of the continuity equation in {1).

For the sake of completeness we show in Fig. ¢ the results of the rotating cone
test from [2,3]. This test has been used in [3] to document the nonoscillatory
behavior of the MPDATA near “zeros” of the transported field and the lack of
invariance of the scheme with respect to the addition of a constant (see Section 2
of this paper). All solutions in Figs. 6a—d are shown after six revolutions of the cone
{3768 time steps) whose initial height is equal to the size of the reference spike in



368 SMOLARKIEWICZ AND GRABOWSK]

the upper right corner of every plate. Figures 6a-b are after Figs. 8 and 9 wn {2}
and Fig 6¢c is after Fig. 2 in [3] and they represent, respectively, solutions for
TORD =2 and IORD =3 MPDATA with a zero background valve and IORD =2
MPDATA with a large constant background. As discassed in [3], the addition of
the large constant improves the overall accuracy of the scheme but at the cost of
dispersive ripples, Fig. 6c. The solution shown in Fig. 6d is equivaient to that in
Fig. 6¢, except that it has been obtained with the JORD =2 nonoscillatory version
of the MPDATA. It is apparent in the figure that the ripples disappeared without
noticeable degrading of the overall accuracy of the solution, The latrer is consistent

Al L N (B

A
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e
THLTR
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[THAY
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Fi6. & The rotating cone test from {2, 31 All solutions are shown after 3768 time steps (six revolu-
tions of the cone), The reference spikes in the upper-tight and the lower-left corners represent the initial-
and minus half of the initial-height of the cone: (3} JORD =2 MPDATA with zero background value!
by FORD =3 with zero background value; (¢} IORD =2 with Jarge constart -background value:
(d3 FORD =2 nonoscillatory option of MPDATA with the same as in {c) large vonstant background.
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with the results of the convergence test and the irregular-signal advection test dis-
cussed earlier in this section. It is worth noting that the solution, equivalent to that
shown in Fig. 6, obtained with the donor-cell scheme (JORD =1) almost vanishes
1, Fig. 27, whereas the results obtained for the FCT version of the second-order
multidimensional Crowley scheme [8, Fig. 13] are considerably less accurate than
these in Fig. 6.

The elementary excercises presented in this section represent only a modest part
of a number of different tests performed. In order to verify the performance of the
nonoscillatory option of the MPDATA we have repeated most of the tests reported
in [2,3]. In all cases considered the essential outcome was the same as
demonstrated herein, ie, FCT modification to the pseudo velocities in 18}
efficiently removed spurious local extrema from the solutions without significantly
affecting other properties of the scheme widely documented in previous pubii-
cations. In all tests performed we have encountered neither the “clipping” nor the
“staircases”—pathological behaviors of the FCT schemes often reported in the
literature. In the following section we shall demonstrate the satisfactory perfor-
mance of the scheme in fluid dynamics applications.

5. EXAMPLES OF APPLICATIONS

The incorporation of original MPDATA into the anelastic, terrain-following
coordinate, dynamic model of Clark [12-147 has been reported in [3]. The modei
employs the second-order accurate, kinetic energy semi-conserving method of Lilly
[157 and Arakawa [16] for integration of the transport equation of momentum,
and the second-order accurate MPDATA for all other scalar variables. Because it
is the positive definiteness rather than the monotonicity preservation of the traps-
ported scalar ﬁelds whxch 13 essential for most applications of the model, the
il ) has been incorporated into the model as a
special-purpose option. The time consumption associated with usage of the non-
oscillatory option in the model is approximately equivalent to the time
consumption for the default (oscillatory) calculations with JORD =1+ 2(/ORD — 1}
iterarions.

Further in this section we discuss examples of applications of the nonoscillatory
MPDATA to selected problems of atmospheric fluid dynamics. The two-dimen-
sional algorithm has been applied to the high-resolution experiments of a rising
thermal. The three-dimensional algorithm has been applied to the large-eddy
simulation of the planetary boundary layer. In the current paper we focus our intsr-
ests on numerical aspects of the calculations performed—thus we shall discuss
physical details of the simulated phenomena only to the extent necessary 1o
emphasize certain aspects of the numerics.

5.1. Two-Dimensional Thermal Simulation

Herein, we discuss the rising-thermal experiment similar to that reported in {177,
where the authors provided a brief summary of the physical problem and essential

S81/86/2-8



370 SMOLARKIEWICZ AND GRABOWSKI

references to adequate numerical and laboratory studies. A dry, slab-symmetric
thermal with a diameter of 500 m is placed at 260 m distance above the ground in
the center of the horizontal domain. The thermal has a uniform, initial potential
temperature excess of 0.5 K relative to the neutral ambient environment. The model
domain is 1000 m high and 800 m wide with a uniform grid spacing of 10 m. Free-
slip, rigid lid upper and lower boundaries, and periodic lateral boundaries were
assumed. The explicit viscosity is zero everywhere. Figure 7a shows the isolines of
the potential temperature excess at ¢= 10 min using the JORD =2 nonoscillatory
option of MPDATA. The qualitative features of the solution, including sharp
gradient zones, formation of the nodes, and the off-axis shift of the buoyancy
maxima, agree very well with the simulations reported in [17] that utilize the
piecewise parabolic method (PPM) [18]. The authors attributed the above-
mentioned features of the solution to the highly inviscid character of calculations
offered by the PPM. The conventional techniques considered in [17] were
incapable of reproducing sharp gradients, off-axis maxima, and nodal structure of
the thermal. Figure 7b shows the solution obtained with the original (oscillatory)
version of MPDATA. A comparison of the two figures shows that the overall
thermal structure and the essential features of the solution are reproduced by both
versions of the scheme. As expected, the oscillatory solution embodies finer scale
structures which may be related to the spurious vorticity production due to the
local oscillations in the buoyancy field. In contrast to the nonoscillatory solution,
the maximum and the minimum of the potential temperature perturbation heavily
over- and undershoots relative to the initial values.

5.2. Large-Eddy Simulation of the Planetary Boundary Layer

In the following example we discuss a simplification of the heated planetary
boundary layer (hereinafter, PBL) experiment of Deardorff [19]. The model
domain of 4 x4 km in the horizontal and 2 km in the vertical is covered with the
uniform grid resolution 50 m. Free-slip, rigid lid upper and lower boundaries and
periodic lateral boundaries were assumed. The initial profiles of potential tem-
perature and the water vapour mixing ratio are ©(z)=283 and ¢,(z)=3.5 for
z<0.8, and @(z)=7.5(z—0.8)+ 283 and ¢.(z)=1 for z> 0.8, respectively, where
the units are, respectively, K, g/kg, and km for @, ¢,, and z. Zero ambient wind has
been assumed. The subgrid-scale turbulence is parametrized with the traditional
first-order closure (cf., [12-14]). The PBL is forced with the sensible heat flux of
200 Wm 2 with the random noise imposed of maximal amplitude +5% of the
constant component.

Figure 8 shows the resolved Reynolds fluxes of moisture, evaluated after 2 h of
simulation with the nonoscillatory (heavy solid line) and the default, oscillatory
(thin solid line) version of MPDATA. The dashed line represents the subgrid-scale
parametrized fluxes which were in both cases at least two orders of magnitude
smaller than the resolved Reynolds fluxes. The presence (absence) of the layer of
negative moisture flux above the top of PBL in the calculations with the default
(nonoscillatory) MPDATA is apparent in the figure. This negative flux, and the
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Fig. 7. Plots of the potential temperature perturbation at 7 = 10 min for a rising-thermal experiment.
Solid contours represent positive values whereas the dashed contours represen: negative. No zero
contours are shown although all contour levels are integral increments from the zero line with the
interval of 0.5 K: (a) Experiment with JORD =2 nonoscillatory option of MPDATA: {b) experiment
with JORD =2 default version of MPDATA. The extrema of the fields are (4999 K, C.000 K and
{6.401 K, —0.247 K} for (a} and (b), respectively.
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FiG. 8. Profiles of the resolved Reynolds fluxes of moisture for a heated boundary layer experiment.
Heavy solid line represents the results for JORD =2 nonoscillatory option of MPDATA whereas the
thin solid line represents the results for the default MPDATA, and the dashed line shows the subgrid-
scale parametrized flux.

similar structures in the resolved Reynolds fluxes of other thermodynamical
variables are a traditional complaint about the large-eddy simulations of turbulent
layers. Their relevance to natural PBL was discussed by Deardorff [19], and more
recently by Moeng [20], who attributed these features to the spurious effects due
to truncation errors at sharp inversions. Since such unrealistic structures may affect
eventual parametrization of PBL (one goal of PBL studies) they are usually filtered.
Incorporation of the monotone version of MPDATA effectively cures these
problems.

6. CONCLUSIONS

1. The nonoscillatory option of the multidimensional positive definite advection
transport algorithm (MPDATA) was presented. The monotone version of the
scheme merges the flux corrected transport (FCT) methodology with the iterative
formalism of the MPDATA. Due to the original design of the MPDATA the non-
oscillatory option reduces to a simple mofidication of the pseudo velocity field,
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Eqg. (18). Because of the specific phase-error properties of the MPDATA. the
monotone option effectively prevents development of the dispersive ripples without
significantly affecting other properties of the solutions. This has been illustrated by
means of elementary tests and examples of applications to atmospheric fluid
dynamics problems.

fad

2. An empirical analysis was presented which showed that the nonoscillaiory
MPDATA appears to be an accurate and competitive too! for applications. A
practical advantage of the scheme is a separability of the sign and the monotonicity
preservation. This has important economical consequences for these applications
which do not necessarily require strict preservation of the monotonicity but do
require strict preservations of the sign.

3. The nonoscillatory option, since it only appropriately Hmits the pseude
velocities in MPDATA, is applicable with all possible developments discussed in
the previous publications.

mw—'ﬁ
Fu VN SN ST § B Ug WY SL U RN B ) (AT WL ok of of (OB EsT0 B . )
In order to determine the limiting C-coefficients in {12) we note that the grid-box

divergence of the transport fluxes may be cast into a sum of total incoming and
outgoing fluxes from the grid-box, i.e.,

5 IN _ Z0QUT ca
Z 1+17e, Al‘iZeI,—A ‘4i 4 a’\n"é
f=1
where
IN _ I + I I 1= s Tt
4 Z (Cifl Ze[[Ai— 1"221:] —Ciyy 791L‘41—rl 2¢r ) {AZa:
=1
M
FOUT __ 7 - (4 Vi
Ai = Z ( l+1 7e,[A Ze_,] C,\1 ’e[[Axfi "el] ) (2D
I=1

Using (Al} in (14) results in

lp?viAX;&nTl ¥1n+1 A;N—A?UT?HL'?“N. i“i\

.u

F

Since in {A3) only the inflowing flux increases the value of 7 *! and only the out-
flowing flux decreases it, then in order to satisfy constraints in {14}, it is sufficient
to ensure that

MAX i L ol N P A e
e & >m?x(CFLZE[,C } A4 (Aday

P+ 1 2e,/
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where
M
AIN_ Z ([A1712e1]+ [A1+12e1] )9 (A5a)
Y
APV =Y ([Af4 e ] T — [A] 1517) (A5b)
I=1

The inequalities (A4a), (A4b) imply that
V max(Ci_ e Ciyae) < B V max(Ci_ e Ci s 12e) < Bt (A6a), (A6b)
where

MAX n+ 1 n+ 1 MIN
Wi B Yli . !pi - ‘pi

A!N_,r_g > ﬁllE A-OUT+8 s (A7a), (A7b)

Bl

and ¢ is a small value (e.g., 10 ' introduced for coding cfficiency of f-ratios when
AN or APYT vanish. Solving (A6a), (A6b) for C-coefficients results, for every I, in

CI

i+ 1:2¢; ™=

<min(B], B1);  Ci_ip, <min(Bl, B})  (A8a), (A8b)

I I
but since C{, 5, =Ci,e,— 12, and Ci_1pe=Ci_ 1 10e the coefficients C{, .,
and C{_,, must also satisfy the inequalities

C|[+ 1/2¢; ™= < mln(ﬁr+ e;? ﬁl + e, 5 CII~— 1/2e; ™= < mln(ﬂl e’ ﬁl el) (Aga)’ (Agb)

The inequalities (A8), (A9), and (13) reduce to the simple form

VC.’+1,e[<min(1, ﬁI’ﬁ ﬁl+e[’ ﬂl+e1 (AlO)

The inequality (A10) is the sufficient condition for monotonicity of the modified
scheme (14). The ratios ] and B} control overshoots and undershoots, respectively,
of the solution at x; grid point. Since 4], ,,,, in (12) is exclusively, either positive
or negative (vamshmg Aj 12, 1s a trivial case), it exclusively contributes either to
the undershoot at x; and the overshoot at x, ¢, OF the overshoot at x; and the
undershoot at x; , ,, respectively. Thus, (A10) may be further reduced to

C|1+1/2e[_m1n(1 ﬁl’ Bl+e[) lf Al+12e,>07 (Alla)
C{ =min(1, 8], B{,.) if A{, 4, <0, (Al1b)

i+ 1/2¢;
where the equality sign selected in (Alla), (Al1b) ensures maximal values of the
C-coefficients allowed by the monotonicity constraints and consequently minimal

adjustment of the A-fluxes in (12) and the maximal accuracy of the modified
algorithm (14). Incorporating (Alla), (Al1lb) in (12) gives, finally, (15).
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